

T.Y.B.Sc CH-502

Questions Responses 3 Settings Total points: 40

Section 1 of 3

Vivekanand Pratishthan Purskrut KAKPs Commerce and Science College,

T.Y. B.Sc Internal Exam CH-501

Email *

Valid email

This form is collecting emails. Change settings

After section 1 Continue to next section

Section 2 of 3

Personal Details

Description (optional)

Name of the Students *

Short answer text

PRN No *

Short answer text

After section 2 Continue to next section

Section 3 of 3

Exam Section All Questions are compulsory, Each Question Carry 2 Marks Q.1) The order of repulsion in multiple bonds is___ * Double bond>Triple bond>Single bond Triple bond>Double bond>Single bond Single bond>double bond >triple bond None of these Q.2) How many loan pair present in Dichloroiodate(I)anion.? * 3 Q.3) The F-Br-F bond angle in BrF3 is___ *

85.6°

86.7°

(+)

Tτ

11/22, 11:45 PM	T.Y.B.Sc CH-502 - Google Forms
86.5°	
Q.4) Primary valence satisfy *	
Negative ion	
Negative ion or neutral molecule	
O Both a and b	
None of these	
Q.5) Complex containing same number of	
ordinated to central metal ion wholely or p	partly are called
Hydrate isomer	
Columba is a many	
Solvate isomer	
O Ionisation isomer	

Both a and b

Q.7) Which one of the following show geometrical isomerism? *

Tr

Octahedral complexes	
Tetrahedral complexes	
O Both a and b	
Q.8) The number of geometrical isomer shown by the squar	e planar complexes [Mabcd] *
4 isomer	
3 isomer	
2 isomer	
5 isome	
Q.9) Complexes with Co-ordination number 4 have *	
O POnly square planar geometry	
Tetrahedral geometry	
Octahedral geometry	
O Both a and b	
Q.10) In VBT, bond formation between metal and ligand are	*
Covalent bond	
Intermediate bonding	
O lonic bonding	
None of these	
⊕ ∃ T _T △	

Q.11) The splitting of five degenerate d- orbital of the free metal ion under the influence of approach ligand into two or more groups having different energy is called?	k
Crystal field splitting	
Crystal field theory	
Crystal field stabilisation energy	
None of these	
Q.12) Degenerate orbital have *	
Matching geometry	
O Different energy	
Matching symmetry	
Similar energy	
Q.13) The decrease in energy caused by the splitting of degenerate d-orbital and their occupancy by electron is called	*
○ CFSE	
Crystal field splitting	
Spectrochemical series	
Four	
Q.14) In octahedral ligand field *	
the t2g orbital have higher energy than eg orbital	
⊕ £ T _T □ E	

Both eg and t2g	orbital have simi	lar energy			
The energies of t	2g and eg orbita	Il can not be pre	dicted		
Q.15) The complexe	es which have	smaller degree	e crystal field s	plitting are called	d**
Strong field com	plex				
Weak field comp	lexes				
Both a and b					
None of these					
Q.16) The magnitud	de of crystal fie	eld splitting (10	Dq)Requir	ed to answer. Sir	ngle choice. *
Increase with dec	crease in oxidati	on state of meta	ıl		
Increase with inc	rease in size of	d-orbital			
Increase with dec	crease in size of	d-orbital			
None of above					
Q.17) MOT conside	r the bonding	between meta	l and ligand is_	*	
Purely ionic					
Intermediate bon	iding				
Purely covalent					
All of these					
(+)	\Box	Тт		▶	

11/22, 11	:45 PM	T.Y.B.Sc CH-502 - Google Forms	
	s,p,d orbital		
0	s.p orbital		
0	d orbital only		
0	none of these		
Q.1	9) The distribu	ution of electron in splitted d-orbital do not obey Hund's rule when *	
\bigcirc	10 Dq <pairing< td=""><td>energy</td><td></td></pairing<>	energy	
\bigcirc	10Dq>pairing 6	energy	
\bigcirc	10Dq is zero		
0	None of the ab	oove	
Q.2	0) The symmo	netry symbol used for dxy,dyz,dzx metal orbital in octahedral complexes	*
\bigcirc	t2g		
\bigcirc	a1g		
\bigcirc	eg		
0	t1u		

Ττ

 \oplus

 \blacksquare

•